Author: Wicaksono, Danang Wahyu, Irawan, Mohammad Isa, Rukmi, Alvida Mustika
Bidang: Matematika, model Bayesian; LSA; document similarity
Penerbit: Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS
Metode Latent Semantic Analysis(LSA) adalah suatu metode yang mampu merepresentasikan hubungan antar dokumen teks melalui term serta dapat menilai kemiripan antar dokumen teks tersebut. Namun, metode LSA hanya menilai kemiripan antar dokumen teks melalui frekuensi term yang ada pada masing-masing dokumen teks sehingga mempunyai kelemahan yaitu tidak memperhatikan urutan atau tata letak term tersebut yang secara tidak langsung berpengaruh pada makna yang terkandung pada masing-masing dokumen. Oleh karena itu, digunakan model Bayesian pada term yang dihasilkan oleh LSA tersebut untuk menjaga dan memperhatikan urutan termdalam mendeteksi kemiripan antar dokumen teks sehingga struktur kalimat tetap terjaga dan mendapat hasil penilaian kemiripan antar dokumen teks yang lebih baik.Jika terdapat dua dokumen yang saling salin (copy) namun struktur kalimatnya diubah dan dibandingkan pada LSA dengan menggunakan cosine similarity maka akan didapat hasil yang sama seperti kedua dokumen ini dibandingkan tanpa perubahan struktur kalimat, sedangkan jika dibandingkan dengan menggunakan model Bayesian pada term, dokumen-dokumen yang mempunyai perbedaan struktur kalimat akan diperlakukan berbeda.